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• To study the feasibility of modeling Quasi-
Optical Systems with software packages
based on an optical approach

Intent
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Motivation

• Different software packages exist. Some are
based on a pure electromagnetic approach
and some on an optical approach.

• Understanding the differences between
these methods is needed for their appropriate
use.

⇓
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Plan

• A comparison between a scalar diffraction
theory and a full vector diffraction theory
when used for modeling electrically large
systems (such as telescopes, reflector
antennas…)

• A better understanding of the applicability of
different software tools

⇓
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Overview
• Basic description

– Full vector theory (Physical Optics)
– Scalar theory (Fourier Optics)
– Mathematical differences

• Examples and Results
– POPO (Physical Optics)
– MACOS  (Fourier Optics)

• Conclusions



High Performance Computing Group - A. Borgioli, T. Cwik 6

Test systems

(Part of the) Deep Space

Network antenna
X-band (8.45 GHz)

D/λ ~ 100

(Microwave Instrument for the
Rosetta Orbiter)

MIRO Telescope
240/560 GHz

D/λ ~ 250/600
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Foundation of vector diffraction
theory

Always start from Maxwell’s equations:

⇓
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Foundation of vector diffraction
theory

‘Vector diffraction integrals’
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Foundation of vector diffraction
theory
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In terms of equivalent surface distributions
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Foundation of vector diffraction
theory

• The vector diffraction integrals are often applied to a metallic
reflecting surface (reflector).

⇒

• Evaluation of it requires the solution of an integral equation,
since the induced surface-current distribution in the integral is
unknown
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Physical Optics approximation:
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Foundation of vector diffraction
theory

• An approximations of the currents is needed
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Foundation of scalar diffraction
theory

Maxwell’s equations
+

 approximations
(medium: linear, isotropic,

 homogeneous and nondispersive)

⇓
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‘Scalar diffraction integral’

( )U P

S
n

U
U

n
ds= −





∫∫1

4π
∂ψ
∂

ψ
∂
∂

   

Foundation of scalar diffraction
theory

• Fresnel/Fraunhofer formulas allow diffraction
pattern calculations to be reduced to relatively
simple expressions
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Foundation of scalar diffraction
theory
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• The Fresnel approximation (~ near field): the
spherical wavefronts are replaced by parabolic
wavefronts

F = Fourier Transform
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Foundation of scalar diffraction
theory

• The Fraunhofer approximation (far field):
the spherical wavefronts are replaced by
flat wavefronts

F = Fourier Transform



High Performance Computing Group - A. Borgioli, T. Cwik 16

Are They Equivalent ?

≠

• The scalar formulation is not generally valid for
an open surface (vector integrals are not
always equivalent to scalar integrals)

Optical approach

Full Electromagnetic approach

⇓
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 Interpretation
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• Axially directed component of the currents are neglected

• Error is small on the optical axis, provided the angle of
observation is small
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•
P

front surface

feed

Physical Optics Fresnel/Fraunhofer formula
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 Test Codes

• POPO (‘Physical Optics-Physical Optics’)
– based on a full electromagnetic theory
– very accurate (our ‘true’ solution)

• MACOS (‘Modeling and Analysing for
Controlled Optical Sytems’)
– based on Fourier Optics
– succesfully used for modelling optical systems
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Test system: DSN subsystem
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reflector
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Results
Far field pattern

on XY (plane of symmetry )
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Results
Far field pattern

on YZ (plane of asymmetry )
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Results
Ray tracing only

on XY (plane of symmetry )
Ray tracing only

on YZ (plane of asymmetry )
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Test system: MIRO telescope

freq. = 240 GHz x0

z0

Mirror M1 Mirror M2

Main Reflector

Subreflector

y0

Miro Telescope Configuration
Side View

Conical Horn
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Results
Far field pattern of main reflector at 240 GHz



High Performance Computing Group - A. Borgioli, T. Cwik 25

Computational tradeoff

        POPO
(radiation integral
 over the surface)

⇓
computationally 
very  expensive

        MACOS
(Fast Fourier
   Transform)

⇓
computationally 
inexpensive
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Conclusions

• Optics-based software packages applied to
electrically large systems may not provide
accurate representations for the fields in regions
of interest, but since they are computationally
advantageous they can be a useful support in
early design phases of RF systems.


